
Spatio-Temporal Trajectory Simplification for Inferring

Travel Paths

Hengfeng Li, Lars Kulik, Kotagiri Ramamohanarao
Department of Computing and Information Systems

The University of Melbourne
Victoria 3010, Australia

{hengfeng.li, lkulik, kotagiri}@unimelb.edu.au

ABSTRACT
Mining GPS trajectories of moving vehicles has led to many
research directions, such as tra�c modeling and driving pred-
ication. An important challenge is how to map GPS traces to
a road network accurately under noisy conditions. However,
to the best of our knowledge, there is no existing work that
first simplifies a trajectory to improve map matching. In this
paper we propose three trajectory simplification algorithms
that can deal with both o✏ine and online trajectory data.
We use weighting functions to incorporate spatial knowl-
edge, such as segment lengths and turning angles, into our
simplification algorithms. In addition, we measure the noise
degree of a GPS point based on its spatio-temporal relation-
ship to its neighbors. The e↵ectiveness of our algorithms is
comprehensively evaluated on real trajectory datasets with
varying the noise levels and sampling rates. Our evaluation
shows that under highly noisy conditions, our proposed al-
gorithms considerably improve map matching accuracy and
reduce computational costs compared to the state-of-the-art
methods.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications–
Spatial databases and GIS

General Terms
Algorithms, Performance

Keywords
trajectory simplification; map matching; GPS trace; path
inference

1. INTRODUCTION
A GPS trajectory is a temporal sequence of observed loca-

tions. Each data point consists of a coordinate, i.e., latitude

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from Permissions@acm.org.

SIGSPATIAL ’14 November 04 - 07 2014, Dallas/Fort Worth, TX, USA

ACM Copyright is held by the owner/author(s). Publication rights licensed

to ACM. ACM 978-1-4503-3131-9/14/11...$15.00.

http://dx.doi.org/10.1145/2666310.2666409.

and longitude, and a corresponding timestamp. The noise in
GPS measurements leads to uncertain GPS locations, which
makes it di�cult to locate the true visited path in a road net-
work. Map matching is a technique that aims to deal with
this issue through mapping GPS points to a road network.

Challenges
In order to successfully infer an accurate path, the following
challenges need to be addressed:

• Noisy GPS points: Noise in GPS measurement causes
the uncertainty of recorded locations. The coordinates
of points deviate from their true position on the roads.
Thus, it is di�cult to identify to which road a GPS
point should be mapped.

• Stop points: If vehicles get stuck in tra�c jams or have
to stop at intersections, GPS points are still recorded.
Consequently, GPS points are randomly distributed
around the stop point due to the general GPS noise.
Stop points can cause significant errors in map match-
ing algorithms.

• Variable road density: In some regions, roads are fairly
well distributed. However, in urban areas, roads are
densely placed due to the space limitations. For ex-
ample, parallel roads can pose significant challenges to
mapping a GPS trace to correct roads when the trace
is exactly located in the middle of two parallel roads.

Our research is guided by the following observations: (i)
Many vehicles are equipped with on-board GPS devices lead-
ing to a large amount of GPS data. (ii) A GPS trajectory is
a temporal sequence of spatial coordinates. The question of
how to accurately match GPS trajectories to a road network
is a fundamental spatial problem. (iii) We can use spatial
knowledge, such as the segment lengths of trajectory parts
or the turning angles between two straight line segments of
the trajectory, to simplify a GPS trajectory to remove noisy
points and stop points.

Contributions
In this paper, we use trajectory simplification to enhance
map matching to obtain a higher accuracy and a lower com-
putational costs.

Our insight that simplifying a trajectory can remove noisy
points and stop points is demonstrated by the example shown
in Figure 1. According to Figure 1(a), the GPS noise causes
GPS measurements that are not accurate. In addition, stop

(a) Ground truth (b) Simplified trace

Figure 1: (a) A noisy GPS trajectory (green points) and its true path (dark blue) on roads (light grey).
The observed locations from GPS points are uncertain. Stop points can incur clusters of GPS points. (b) A
simplified GPS trajectory (8 points, black point and red line). It is a subset of original noisy data (87 points,
green), which is more similar to its ground truth.

points are often prone to oversampling. Figure 1(b) shows
that a simplified trajectory reduces noisy points and removes
oversampling at stop points. Although a reduced sampling
of GPS points would also lead to a simplified trajectory,
there is less GPS data available, which could exacerbate the
error in map matching.

More specifically, our contributions in this paper are:

1. Three simplification algorithms: we propose In-
cremental Simplification (IS) that simplifies a trajec-
tory point-by-point by maintaining an incremental win-
dow, Sliding Window Simplification (SWS) that keeps
a fixed size of window moving forward with an increas-
ing number of points, and Global Simplification (GS)
that considers the entire trajectory while reducing the
number of GPS points, to deal with both o✏ine and
online trajectory data.

2. Use of weighting functions in simplification: we
use di↵erent weighting functions that incorporate spa-
tial knowledge into the trajectory simplification pro-
cess. The functions measure the noise degree of a GPS
point based on the spatio-temporal relationship to its
neighbors.

3. Comprehensive experiments on real data: We
evaluate our algorithms on two real datasets – Seattle
and Melbourne. Through variation of the noise lev-
els and sampling rates, the algorithms are evaluated
under less favorably conditions. In addition to using
existing datasets, we collect our own GPS data to en-
sure ground truth, which we aim to make available for
other researchers.

The rest of the paper is organized as follows: Section 2
reviews related work and Section 3 formally presents pre-
liminary definitions and defines the problem. Section 4 de-
scribes our proposed simplification algorithms and Section
5 discusses particulars of our algorithms. The experimen-
tal study is given in Section 6 and Section 7 outlines future
research directions.

2. RELATED WORK
Trajectory Simplification. The Douglas Peucker (DP)

algorithm [6] is a well-known line simplification approach
that has been applied to the problem of spatio-temporal
data reduction in mobile phones or PDAs datasets [4]. In
addition, a variant of DP for moving object trajectories [12]
takes into account the travel time di↵erence and derived
speeds rather than only calculating perpendicular distance.
Other DP variants adopt strategies, like approximating the
distance from a point to a line segment [7] and choosing a
point close to the middle of a trajectory [8].

In addition to DP, a semantic simplification algorithm was
proposed in [5], which uses location semantics, e.g., land-
marks, to determine important points of a trajectory. Fur-
ther, in [14] the distance function is similar to the perpen-
dicular distance based on projection of points, but it takes
speed into consideration. A simplification algorithm was
given in [10], which chooses characteristic points from a tra-
jectory according to the defined cost function. A trajectory
compression framework PRESS [15] maps trajectories into
sequences of edges and compresses these sequences based on
spatial path and temporal information.

Map Matching. Most proposed methods use geometric
knowledge to address the problem. Four map matching algo-
rithms were introduced in [17], finding a closest road, adding
orientation, considering topology, and calculating the simi-
larity between trajectories and road segments. In addition,
authors in [3] proposed two approaches, the incremental al-
gorithm based on perpendicular distance and turning angle
and the global matching algorithm minimizing the Fréchet
distance of two curves. Another branch models the prob-
lem as a probability prediction. A representative approach
is Hidden Markov Model (HMM) map matching [13], which
assumes that GPS measurement errors is under a zero-mean
Gaussian distribution and the ratio of comparing Euclidean
distance of two consecutive points to their route distance is
under an exponential distribution. The Viterbi algorithm is
applied to search an optimal path. Some similar research
using HMM has been done in [11] and [18].

3. PROBLEM STATEMENT
In this section, we present preliminary definitions that

are commonly used in the path inference. Based on these
definitions, we describe our approach to the simplification
problem. We also present the basic methodology to evaluate
di↵erent simplification strategies to improve map matching
accuracy. Lastly, we give an overview of our path inference
system.

3.1 Preliminary Definitions
Definition 1. (Road network). G(V,E) is a graph

of road network. Vertices V represent intersections or end

points in a road network and edges E are the directed road

segments.

In other words, a vertex v 2 V can only be a start or an
end point of an edge e 2 E.

Definition 2. (Original path). The original path P
is a sequence of road segments to represent the route of a

vehicle’s movement, P = [e
p1 , ep2 , ..., epN], and e

pN 2 E.

Additionally, 8 e
pi , epi+1 9 vl, vm, v

k

2 V such that e
pi =<

v
l

, v
m

> and e
pi+1 =< v

m

, v
k

>.

Definition 3. (Raw trajectory). The raw trajectory

T consists of measured GPS points along the true path P
during a fixed or varied time intervals. A trajectory function

f
T

can be defined as:

for t 2 [t1, t2, ..., tn] : t 7! f
T

(t) 2 R2

Each GPS point has its latitude, longitude, and measured
timestamp. Due to GPS measurement noise, the location of
each point is uncertain.

Definition 4. (Simplified trajectory). Simplified tra-

jectory T
s

is a subset of T . T
s

contains fewer or equal num-

ber of GPS points after removing noisy or stop points from

T . A simplified trajectory function f
Ts can be defined as:

for t 2 [t1, t2, ..., tm],m n : t 7! f
Ts(t) 2 R2

The aim is to obtain a simplified trajectory T
s

that can be
used for reconstructing a traveled path. This reconstructed
path is highly similar to its original (ground truth) path P ,
after cleaning those noisy points and less important points.

Definition 5. (Map matching). Map matching is a

process to map a raw GPS trajectory T to a sequence of

road segments S. The process can be defined as a function

Map:

S = Map(T)

where T = [p
t1 , pt2 , ..., ptn], S = [e

t1 , et2 , ..., etn], and e
tn 2

E.

Definition 6. (Path inference). Path inference com-

putes a complete and fully-connected path through removing

duplicates and interpolating missing edges in S. The process

can be defined as a function Path:

P 0 = Path(S)

where P 0 = [e
p

0
1
, e

p

0
2
, ..., e

p

0
M
] and e

p

0
M
2 E.

Definition 7. (Path distance measure). The path

distance measure Dist(P1, P2) calculates the similarity of

two paths, P1 and P2. A smaller distance between two paths

refers to a higher similarity.

8P1, P2 : P1, P2 7! Dist(P1, P2) 2 R�0

Raw GPS
Tajectory

Learn weights

Simplify
Trajectory

Simplification

Search possible
candidates

Find best path

Map Matching
Road

Network

Estimate
Path

Path Cleaning &
Interpolation

Eliminate duplicates

Interpolate missing
edges

Figure 2: An overview of path inference system for
a raw GPS trajectory.

3.2 Problem Description
Our goal is to estimate a path P 0 from a raw GPS tra-

jectory T which is as similar as possible to its actual path
P . Due to GPS measurement noise, collected GPS points
have certain deviations to their actual positions on the true
path P . Such uncertain locations may lead to many errors
in map matching. To address the above problem, a simpli-
fication process can be applied to the raw trajectory T to
remove noisy and stop points, which leads to a simplified
trajectory T 0.

We assume that P 0
T

and P 0
T

0 are the estimated paths of the
raw data T and simplified data T 0 using the path inference
process. We also use the distance measure Dist(A,B) to
compute the similarity between the trajectory A and B. The
lower value of Dist(A,B), the more similar A and B are.
If Dist(P 0

T

, P) > Dist(P 0
T

0 , P) exists, it means that P 0
T

0 is
more similar to P than P 0

T

, which implies that the simplified
trajectory improves the map matching accuracy. Next, we
assume that P 0

1 and P 0
2 are the estimated results using two

di↵erent simplification approaches M1 and M2, respectively.
If Dist(P 0

1, P) > Dist(P 0
2, P) exists, M2 is better than M1.

Overall, we want to validate that the simplification pro-
cess improves the performance of path inference and also our
proposed algorithms outperform the state-of-the-art meth-
ods.

3.3 System Overview
The system has three components: trajectory simplifica-

tion, map matching, and path cleaning & interpolating (Fig-
ure 2). It needs two inputs, raw GPS trajectories and the
graph of a road network. Firstly, we assign a value (a weight)
to each GPS point, which indicates the importance of the
point to the GPS trajectory. We predefine a weighting func-
tion using spatial knowledge such as the segment lengths of
trajectory parts or the turning angles between two straight
line segments of the trajectory. Then, based on the weights,
we gradually remove noisy points from the original trace.
Removal of noisy points and stop points requires to update
the weights of their neighbors. A map matching algorithm

1

2

3 4

5

6

7
Growing Window

1

2

3 4

5

6

7
Growing Window

Figure 3: An example of a simplifying update of the
incremental algorithm.

is applied to search for an optimal estimated path for the
whole GPS trajectory on the road network. Finally, to re-
construct a complete footprint, we need to eliminate dupli-
cates and add missing edges along the estimated path. In
this paper, we focus on how to simplify a trajectory to re-
move noisy GPS points and to improve the performance of
path inference.

4. TRAJECTORY SIMPLIFICATION
In this section, we propose three algorithms: incremen-

tal simplification, sliding window simplification, and global

simplification. The general principle is that the weight of
each point indicates its importance in the entire trajectory.
We define the weight by combining a geometric property w

g

and reliability w
r

(indicating the noise degree), see Section
5. When a point is removed, its neighbor’s weights need
to be updated. Finally, when the size of a simplified trajec-
tory equals to the number calculated by a given compression
ratio, the simplification algorithm terminates.

4.1 Incremental Simplification
The main idea of incremental simplification is to use a

growing window approach for the simplified trajectory: the
algorithm removes points within this window. The algo-
rithm starts with the first two GPS points. Then, it incre-
mentally scans the remaining points adding a point to its
existing simplified trajectory T 0 (Algorithm 1). Next, the
algorithm updates the weights of the neighbor points for
this new point. A decision is made whether or not to delete
a point from the simplified trajectory. This is determined by
the number of points that the simplified trajectory should
keep, which in turn is specified by the compression ratio r.
For example, if there are 100 points in the original trajec-
tory and the compression ratio r is 70% then 70 points are
to be removed in the final simplified trajectory.

In the incremental simplification, the size of existing sim-
plified trajectory T 0 is based on the number of scanned
points and their compression ratio r. If the size of T 0 ex-
ceeds the number of points to be kept, the algorithm re-
moves a point from the simplified trajectory T 0. Then, a
point with the minimum weight is removed from T 0 and all
of its neighbors weights are updated. Through processing
such GPS point in turn and applying our proposed simpli-
fication method, a simplified GPS trajectory with a specific
compression ratio can be achieved.

Algorithm 1: Incremental Trajectory Simplification

Input : T = [p
t1 , pt2 , ..., ptN] is a raw GPS trajectory

that consists of measured GPS points and a
compression rate r

comp

also is given.
Output: T 0 is a subset of T , which is a simplified

trajectory from T .
begin

// Initialize the simplified trajectory
T 0 = [p

t1 , pt2]
numVisited � 2
for p 2 [p

t3 , pt4 , ..., ptN] do
Append p to T 0

Calculate weights for the new triangle
numVisited � numVisited + 1
// Calculate the number of points to be kept
numKeep � numVisited ⇥(1� r)
if numKeep < size(T 0) then

// Search for and delete a point from T 0

Find the point p0 with minimum weight
Remove p0 from T 0

Update weights of p0’s neighbors

An example of a simplification update of the incremental
algorithm is illustrated in Figure 3. In the figure, there are
three types of points, unvisited points (empty, like node 7),
visited points (grey color, like node 3), and reserved points
(black color, like nodes 1, 4, 5). A solid line is a part of
the existing simplified trajectory T 0 and a dashed line is a
segment of its original trajectory T . The example assumes
that we have already visited nodes from 1 to 5 and we can
only keep four nodes in T 0. Now, node 6 is added to T 0,
but T 0 can only maintain 4 nodes so that a node has to be
deleted from T 0. Every three consecutive nodes in T 0 can
form a triangle. The triangle of nodes 1-2-4 has the lowest
height compared to nodes 2-4-5 and nodes 4-5-6. Therefore,
node 2 is removed from T 0. Calculating triangle’s height
is one of the geometric weighting functions, which we will
discuss later.

It is common to implement a priority queue (minimum
heap) to achieve a time complexity O(log n) for deleting a
point with the smallest weight from the current simplified
trajectory. However, the di�culty is that we need to search
for the deleted point’s neighbors and update their weights.
This requires an ordered index for the simplified trajectory
to keep the complexity of the search process to be O(1)
(using a double linked list) or O(log n) (using binary search).
If both deleting the minimum weighted point and searching
its temporal neighbors is achieved in O(log n) time, then the
time complexity of incremental simplification is O(n log n).

The incremental simplification can be directly used for
online or stream trajectory simplification. However, it has
two major drawbacks. First, when the algorithm deals with
a real-time GPS trajectory, its execution time increases sig-
nificantly because increasing the size of the window incurs a
search for more points. Second, this algorithm only consid-
ers the historical GPS points that it has considered before.
This is a greedy algorithm that always considers current sim-
plification as the best strategy. Its early simplification can
lead to a global non-optimal solution.

1

2

3 4

5

6

7
Sliding Window (size = 3)

1

2

3 4

5

6

7
Sliding Window (size = 3)

Figure 4: An example of the sliding window simpli-

fication process.

4.2 Sliding Window Simplification
To keep a constant execution time for handling with the

online trajectory simplification, we present an algorithm based
on the sliding window. The algorithm maintains a fixed-size
window for its search instead of scanning all visited points.
The visited points as for the sliding window approach are
no longer checked.

An example illustrates the sliding window simplification
(Figure 4). If the size of the sliding window is 3, only three
points will be scanned when a simplification update is re-
quired. Node 1 is safe and will not be removed from the
simplified trajectory. In this case, node 4 is removed from
the simplified trajectory instead of node 2 that is deleted in
the previous case of incremental algorithm (Figure 3).

Algorithm 1 can be modified to implement a sliding win-
dow algorithm. The algorithm still searches for a minimally
weighted GPS point, but it only searches backward for k
points (the size of the sliding window). Searching for a min-
imum and updating its neighbors can be achieved in O(log k)
time, which leads to a time complexity of the sliding window
simplification of O(n log k).

The advantage of using a sliding window is the speedup
of execution time even dealing with a large real-time trajec-
tory simplification. Its execution time does not grow with
the increasing number of visited points, which is consider-
ably faster than incremental simplification. It does not com-
pute a simplified trajectory that is optimal, because instead
of considering all visited points, it only considers closest k
neighbors in past. The algorithm sacrifices optimality in
return for a speedup.

4.3 Global Simplification
Finally, we propose a global simplification based on the

S-DMin semantic line simplification [9] for map generaliza-
tion. In this approach, we simplify noisy GPS trajectory by
scanning the entire trajectory to search for the point with
the minimum weight (Algorithm 2).

This method is an o✏ine algorithm, which requires global
knowledge of the trajectory. The main idea is to iteratively
remove a point with the minimum weight until the desired
compression ratio is achieved. In each step, the algorithm
checks the entire remaining GPS trajectory to simplify the
trajectory.

Two major considerations are considered in the global sim-

plification algorithm. First, using always the entire tra-

Algorithm 2: Global Trajectory Simplification

Input : T = [p
t1 , pt2 , ..., ptN] is a raw GPS trajectory

that consists of measured GPS points; a
compression rate r

comp

.
Output: A simplified trajectory T 0 of T .
// Initialize weights
Calculate reliability weights ⌦

r

for GPS point p 2 T do
Compute geometric weight !

g

(p)
Retrieve reliability weight !

r

(p) from ⌦
r

Combined weight ⌦(p) � !
g

(p)⌦ !
r

(p)

Create a list I of all existing self-intersections in T
// Compute the number of points to be kept
N

remain

 � N ⇥ (1� r
comp

)
T 0 � T
while length(T 0) > N

remain

do
Fetch the minimum weighted point p

k

from ⌦
if p

k

/2 I and not intersect(p
k�1, pk+1, T

0
) then

Remove point p
k

from T 0

Update weights of p
k�1 and p

k+1 in T 0

else
!(p

k

) � MAX WEIGHT

jectory, computing geometric and reliability weights for all
points can be done at the very beginning. However, deleting
a point requires an update for the weights of its neighbors.
To keep the same topological consistency with its original
trajectory, new self-intersections are not introduced and ex-
isting ones cannot be removed. Specifically, after initializing
the weights, a list of existing self-intersections is created. Be-
fore removing a point from simplified trajectory, the list of
existing self-intersections is checked to see whether it elimi-
nates a self-intersection. In addition, new self-intersections
cannot created after deleting a point.

Two critical parts determine the time complexity of the al-
gorithm: (i) the search of a point with the minimum weight
and the update of weights of its neighbors; (ii) the naive algo-
rithm for self-intersection detection has a time complexity of
O(n2) as it checks every pair of line segments for a trajectory.
Bentley–Ottmann algorithm [2] is a line sweep algorithm to
determine if n planar segments intersect. This algorithm can
solve the problem in O((n + k) log n), where k is the num-
ber of intersections. The algorithm can be implemented by
using a balanced binary search tree and a logarithmic-time
priority queue.

Global simplification can provide a better simplification
than incremental simplification and sliding window simpli-

fication. In addition, it can maintain the topological con-
sistency without adding new self-intersections and removing
existing ones.

However, the global simplification is an o✏ine algorithm,
which requires a global view of the trajectory. Furthermore,
it is di�cult to achieve a fast algorithm for the detection of
the existing self-intersections, which limits the performance
of global simplification. If it is not necessary to keep topolog-
ical consistency, then self-intersections are eliminated during
the simplification update. However, we still need to ensure
that no new self-intersection are introduced in the simplified
trajectory.

pi�1

pi

pi+1

↵s1 s2

(a)

pi�1

pi

pi+1

sh

sb
(b)

Figure 5: Examples of calculating geometric weights
based on the length of segment, turning angle, and
areas of triangles. p

i�1, p
i

, and p
i+1 are three con-

secutive points of a trajectory.

5. ALGORITHM PARTICULARS
In this section, we discuss how to incorporate geometric

weight !
g

and reliability weight !
r

into trajectory simplifi-
cation for keeping the shape and reducing the noise.

5.1 Geometric Weight
The geometric weight ensures the simplified trajectory is

close to its original trajectory. In general, the geometric
weighting function decides how a point a↵ects the shape of
a trajectory. In other words, if the geometric weight of a
point is small, then this point can be removed with a mini-
mum change to the shape of the trajectory. The geometric
weighting function takes into consideration its local situa-
tion, such as neighbor line segments, turning angle, area of
triangle formed by two adjacent line segments, and perpen-
dicular distance. Three weighting functions are presented:

• Angular biased: f(s1, s2,↵) 7! s1 · s2 · ↵3.

• L2 error norm: f(s
h

, s
b

) 7! 1
2 · s

h

· s
b

.

• Normalised linear: f(s1, s2,↵) 7! s1·s2·↵
s1+s2

.

In the above definitions, s1 and s2 are the lengths of neigh-
bor line segments of a point (Figure 5(a)). ↵ is the turning
angle at a point. s

h

and s
b

are the height and length of
bottom of a triangle (Figure 5(b)), such that the L2 error
norm represents the size of its area. Due to the adaptability
of defining a weighting function, di↵erent weights can also
be attempted, e.g., only applying the triangle’s height also
returns a close shape. Furthermore, we tested with a length
biased weight, f(s1, s2) 7! s1·s2

s1+s2
, which leads to a similar

result to spatial subsampling that picks a GPS point within
a certain distance.

Figure 6 illustrates the di↵erence between giving di↵erent
geometric weights. First, an angular biased weight is sen-
sitive to points with a large turning angle, which is more
accurate to keep turning corners of a trajectory. The L2

error norm weight always removes the smallest triangle in
terms of area. Triangles can be made up of any three consec-
utive points in a trajectory. Furthermore, normalized linear
weight considers both length of line segments and turning
angle, which gives a good approximation with respect to the
geometry.

1. Angular Biased

2. L Error Norm

3. Normalized Linear

2

Figure 6: Trajectory simplification with applying
three di↵erent geometric weights. Raw trace has
308 points (light grey) and simplified trace has 15
points (dark black).

However, applying only geometric simplification for a GPS
trajectory is not su�cient. All simplifying methods assume
that the location of each point is completely correct, but
this is not true for a noisy GPS trajectory. Due to the noisy
representation of a GPS trajectory that contains outliers
and stop points, we have to remove as many noisy points as
possible.

5.2 Reliability
To remove noisy points, the definition of a weight is com-

bined with the relative density as used in outlier detection
[16] and the relative speeds of temporal neighbors. The mo-
tivation of reliability weight comes from an observation that
an outlier always has a large distance and also an unusual
speed comparing to its neighbors. Calculating density learns
whether or not the location of a GPS point is far from its
temporal neighbors through computing the average distance
to them, and the speed of a GPS point is calculated as the
average speed to its predecessors.

density(x, k) =

 P
y2N(x,k) distance(x, y)

|N(x, k)|

!�1

(1)

Eq.(1) calculates the density of a point, where k is the
number of scanned neighbors, N(x, k) returns a set of k
nearest temporal neighbors of point x, and |N(x, k)| returns
the actual size of the set.

speed(x, k0) =
1

|P (x, k0)| ·
X

y2P (x,k0)

distance(x, y)
interval(x, y)

(2)

Eq.(2) illustrates the computation of speed based on k0

predecessors of point x, where P (x, k0) returns a set of k0

predecessors and interval(x, y) gives the time interval be-
tween point x and point y.

!(x, k) =

�����measure(x, k0)�
X

y2N(x,k)

measure(y, k0))
|N(x, k)|

�����

�1

(3)

1 2 3 4 50 6
1km 1km 3km 3km 1km 1km

Noisy point

Figure 7: A simple example for calculating di↵erent
of density and speed information from neighboring
nodes. The numbers 0 to 6 refers to 7 GPS points
in temporal order.

Algorithm 3: Calculating Reliability Weights

Input : A raw GPS trajectory T = [p
t1 , pt2 , ..., ptN], k

is the number of nearest temporal neighbors,
and k0 is the number of predecessors.

Output: ⌦
r

is a list of reliability of weights for each
point in T .

for GPS point p 2 T do
Determine N(p, k), the k-nearest neighbors of p
Determine P (p, k0), the k0 predecessors of p
Compute density(p, k)
Compute speed(p, k0)

for GPS point p 2 T do
// Compute the relative combined weight
⌦

r

(p) � !
d

(x, k)⌦ !
s

(x, k)

where !(x, k) is the similarity of x to its k nearest temporal
neighbors. k0 is used for calculating the measure, which is
substituted by density (in Eq.(1)) or speed (in Eq.(2)).

Figure 7 shows an example that ignores directions of line
segments and reduces the whole trajectory to a straight line.
Take Point 3 as an example, given that k = 4 is the number
of nearest temporal neighbors for calculating density, Point
3 has the distances of 4 km, 3 km, 3 km, 4 km to Point 1,
2, 4, and 5, respectively. Then, its density is calculated as
density(p3, 4) =

�
4+3+3+4

4

��1
= 2

7 km�1. Given that the
number of predecessors for computing the speed is k0 = 1
and the sampling rate is per minute, Point 3 has 3 km dis-
tance to Point 2 and then speed(p3, 1) = 3 km/min. Simi-
larly, applying to Point 1, 2, 4, 5 can get values of 1

2 ,
1
3 ,

1
3 ,

1
2

km in density and 1, 1, 3, 1 km/min in speed. To calculate
the relative weight of Point 3, we need to compute the di↵er-
ences to its neighbors: | 27�(

1
2+

1
3+

1
3+

1
2)·

1
4 | = 0.131 km�1 in

density and |3�(1+1+3+1)· 14 | = 1.5 km/min in speed. Both
the density and the speed have the highest dissimilarities to
its neighbors, which indicates that it has a high probability
to be a noisy point. Finally, we get !

d

= 0.131�1 = 7.636
and !

s

= 1.5�1 = 0.667.

6. EXPERIMENTAL EVALUATION
In this section, we discuss the experiment setting, evalua-

tion methodology, and experimental results. First, the sec-
tion about the experiment setting presents the description of
the used datasets and illustrates the evaluation procedure.
In addition, we adopt the F1 score as an error metric to cal-
culate the distance between paths Dist(P1, P2). Lastly, our
experimental results show a dramatic improvement of map
matching accuracy and execution time.

6.1 Experiment Setting
We evaluate the performance of our proposed algorithms

Table 1: Description of experimental datasets
Location Seattle Melbourne
Sampling per second per second

Number of points 7531 2512
Duration about 2 hours about 40 mins
Area 20.3km⇥11.9km 12.6km⇥11.6km

Error gaps Yes No
Ground truth Yes Yes

Noisy GPS
Data

Ground
Truth Nosie

Trajectory
Simplification Map Matching Footprint

Evaluation

+

Algorithms

Input Output

Figure 8: The procedure of testing the improvement
of simplification on path inference.

on two benchmark datasets.
Seattle Dataset. The dataset has been used in HMM

experiments [13] and captures 2-hour driving in Seattle. It
has 7531 GPS points and contains several time gaps without
recorded points. The GPS trace covers a region between
�122.357316� – �122.086483� longitude and 47.563166� –
47.671083� latitude. The ground truth is a sequence of edges
in the map data.

Melbourne Dataset1. We recorded a trip in Melbourne
of about 40 minutes to increase the diversity and the relia-
bility of our experiments. The trace has 2512 GPS points.
The road data is extracted from the OpenStreetMap2, which
covers 144.9316� – 145.0753� longitude and �37.8269� –
�37.7221� latitude. The driver maps the raw trajectory
afterwards to actual trip in the road network.

The procedure of our experiments is depicted in Figure 8.
Based on the ground truth, we generate noisy trajectory
data, in which noise is created under a zero-mean Gaussian
distribution with a standard deviation of � meters. More
precisely, if the coordinate of a GPS point is (x, y), then the
location of a noisy point is (x + r cos ✓, y + r sin ✓), where
the radian ✓ is under an uniform distribution U(0, 2⇡) and
the radius r (in meters) is under a Gaussian distribution
N (0,�2). In addition, we create input data with di↵erent
sampling rates by taking a sub-trajectory from the gener-
ated trajectory for a given time interval. Then, we apply
the noisy data to our simplification and map matching algo-
rithm to estimate true path. Next, we evaluate the closeness
of the estimated trajectory to its ground truth. In our ex-
periments, spatial sampling (SS) is our baseline algorithm, a
common technique that has been applied to preprocess raw
trajectory data [13].

6.2 Evaluation Methodology
F1 score is commonly used in evaluation of classification

1
http://people.eng.unimelb.edu.au/henli/projects/

map-matching/

2
http://www.openstreetmap.org/

(a) (b)

(c) (d)

Figure 9: Comparisons of the error rates with dif-
ferent sampling rates in reference to the raw data
(Raw), spatial sampling (SS), and global simplifica-

tion (GS) with a 90% compression ratio on the Seat-
tle dataset.

problems in data mining and machine learning. Here, we
use F1 score to test the accuracy of map matching, which
takes into consideration both precision and recall. Precision
refers to the ratio of comparing the length of matched edges
to the length estimated path P 0. Recall calculates the ratio
of comparing the length of matched edges to the length of
ground truth P . F1 score is the harmonic mean of precision
and recall. Then, we transform F1 to the error rate.

Precision =
length(P \ P 0)
length(P 0)

(4)

Recall =
length(P \ P 0)

length(P)
(5)

F1 = 2 · Precision ·Recall
Precision+Recall

(6)

ErrorRate = 1� F1 (7)

where length(x) is the total length of edges x instead of
the number of edges, e.g., length(P 0) is the length of pre-
dicted path P 0.

We also use the error metric used for HMM map matching
in [13] to demonstrate the performance of our algorithms.
The reported error is calculated:

d� = length(P)� length(P \ P 0) (8)

d+ = length(P 0)� length(P \ P 0) (9)

HMM Error =
d� + d+
length(P)

(10)

where d� is the length of edges in the ground truth P
that are not matched to the predicted path P 0 and d+ is the
length of mismatched edges in P 0.

(a) (b)

(c) (d)

Figure 10: Comparisons of the error rates with dif-
ferent sampling rates in reference to the raw data
(Raw), spatial sampling (SS), and global simplifica-

tion (GS) with a 90% compression ratio on the Mel-
bourne dataset.

6.3 Experimental Results

6.3.1 Map Matching Accuracy

The experiments show that our proposed algorithms en-
hance the map matching accuracy significantly compared to
the baseline algorithm. Specifically, through changing noise
� and sampling rates, we create di↵erent situations, e.g.,
mapping a high noise and high density trajectory. The com-
parisons of the map matching accuracy on the Seattle and
Melbourne data set are shown in Figure 9 and Figure 10,
respectively. The x-axis represents the standard deviation �
(in meters) in a zero-mean Gaussian distribution. The error
rate of F1 score ranges from 0 to 1 (a low value means less er-
rors), as shown in Figure 9(a)(b) and Figure 10(a)(b). The
HMM error has no maximum, as shown in Figure 9(c)(d)
and Figure 10(c)(d). When the HMM error is high, the sum
of length of mismatched sections relative to the ground truth
and the inferred path is larger than the length of the ground
truth. That is, the inferred path has a high error rate.

Figure 9 and 10 show that under high noise conditions
(� > 20 meters), our algorithm improves about 20% map
matching accuracy according to the error rate of the F1

score. Similar results are achieved using the HMM error
metric. With increasing noise, the simplified trajectory can
successfully reduce the influence of high noise while recon-
structing trajectory. Simplifying sparse trajectory data can
decrease improvement, because too sparse data incurs more
errors and further reduction of GPS points causes inaccurate
results. For example, in comparison with per second sam-
pling, the improvement of simplifying on 5-second sampling
data decreases to around 10% (Figure 10(b)).

A comprehensive performance summary of our proposed
simplification technique to enhance map matching is de-

1
5

10
15

20
25

30

180 150 120 90 60 45 30 25 20 15 10 5 1

0

0.2

0.4

0.6

0.8

1

σ (meters)Sampling rate (seconds)

E
rr

o
r

ra
te

 o
f

F
1
 s

c
o

re

Figure 11: The error rates with di↵erent noisy lev-
els and sampling rates after applying GS 70% on the
Melbourne dataset. (Lower value has better perfor-
mance.)

picted in Figure 11. More precisely, it shows that when the
sampling rate increases from 2 mins to 3 mins, the error rate
soars from just under 20% to about 60%. In addition, for
very high noise (30 meters �) and very high sampling rates
(1 second), the error goes up to about 40%. There are vir-
tually no errors when sampling rates are 5-30 seconds and �
is less than 5 meters. We can see that both sparser data and
higher noise can incur more errors for map matching. Fur-
thermore, high sampling rates (1-5 seconds) do not always
give the best results due to the interference from noise.

6.3.2 Execution Time

We can see from Figure 12 that with high sampling rates
(1-10 seconds), global simplification reduces the execution
time of map matching for 1 and 5 meters GPS noise.

Figure 12(a) and (b) show that the map matching with
GS runs faster than using raw data and SS as long as the
sampling rate is up to 20 seconds on the Seattle dataset. The
reason is that GS reduces the number of points considerably
which leads to a speedup for the search for the shortest path
between two consecutive points when the trajectory data
is dense. The shortest path search is a necessary step in
HMM. Noisy and dense GPS data lead to an inaccurate
result of shortest path search and longer execution time. For
example, stop points lead to wrong estimated paths, which
cause high execution times. Therefore, our simplification
improves the running speed of HMM map matching.

However, on the Melbourne dataset, map matching using
GS is only fast as long as the sampling rate is less than
10 seconds (Figure 12(c) and (d)). Since GS makes low
sampling data more sparse, it increases the search time for
shortest path computation between two consecutive points.
For example, the Melbourne dataset has 2512 GPS points,
but 252 points remain for the 10-second sampling rate. If
we still use a simplification that reduces the dataset by a
further 90%, then there are only around 26 points remaining.
The search space of the simplified trajectory is considerably
larger than the original trace. Hence, simplifying a sparse
trajectory increases the execution time.

To validate the computational cost of our proposed meth-
ods, we measure and compare the execution time of three

(a) (b)

(c) (d)

Figure 12: (a)(b) and (c)(d) show comparisons of
map matching runtime with di↵erent sampling rates
on the Seattle dataset and the Melbourne dataset,
respectively.

simplification algorithms (Figure 12). According to the fig-
ures, we can see that sliding window simplification (SWS)
and incremental simplification (IS) is faster than global sim-

plification (GS), because GS needs to scan the whole trajec-
tory to find the point with minimum weight. SWS is faster
than IS since the search space of IS becomes large with the
growing window size. SWS keeps a fixed number of window
to search the local minimum point, which does not increase
if considering more GPS points.

6.3.3 Compression Ratios

Our experiments show that the compression ratio a↵ects
the map matching accuracy significantly. Comparisons of
three di↵erent ratios, 30%, 60%, and 90%, are depicted
in Figure 14. First, according to the figures, we can see
that a high simplification ratio enhances the map match-
ing accuracy when there are many GPS points for a trajec-
tory. The error rate of 90% GS is always the lowest in Fig-
ure 14(a)(b)(c). We also point out the significant decrease
of error rate from 60% to 90%, which means that a high
simplification ratio can improve the accuracy substantially
with the high sampling data.

On the other hand, when the data is sparse and there are
not many GPS points for a trajectory, simplification can in-
crease the error rate of map matching. Simplification is a
lossy algorithm and an over-simplified trajectory loses nec-
essary information required for map matching. For exam-
ple, in Figure 14(d), when the sampling rate is 15-second,
GS with 90% compression ratio causes higher error rates
than for 30% and 60%. Therefore, the compression ratio of
simplification should not be set too high, if there are not
many GPS points in the trajectory. Simplification should
be used for high sampling and noisy trajectory data rather
than sparse data.

(a) (b)
Figure 13: Comparisons of the execution time in
reference to global simplification (GS), incremental

simplification (IS), and sliding window simplification

(SWS) (80% compression ratios) on the Melbourne
dataset.

(a) (b)

(c) (d)
Figure 14: Comparisons of the error rates with dif-
ferent sampling rates in reference to global simplifi-

cation (GS) with 30%, 60%, 90% compression ratio
on the Melbourne dataset.

7. CONCLUSIONS AND FUTURE WORK
To conclude, we proposed three simplification algorithms

to enhance the accuracy of map matching, which can deal
with online and o✏ine trajectory data. Furthermore, we use
weighting functions to integrate spatial knowledge into tra-
jectory simplification and we measure the noise degree of a
GPS point. In addition to testing with an existing dataset,
we collect our own GPS data and build ground truth. We
conduct comprehensive experiments on real data. Exper-
imental results show that under high sampling rates and
noisy conditions, our algorithms improve the accuracy and
computational cost of map matching considerably.

A trajectory simplification with adaptive compression ra-
tio could be an important future direction. It learns the
density of road network. We keep few points in sparse area
to map GPS points, but remain more points in dense area.

8. ACKNOWLEDGMENTS
This research was supported under Australian Research

Council’s Discovery Projects funding scheme (project num-
ber DP130103705).

9. REFERENCES
[1] D. Agrawal, W. G. Aref, C.-T. Lu, M. F. Mokbel,

P. Scheuermann, C. Shahabi, and O. Wolfson, editors. 17th
ACM SIGSPATIAL International Symposium on Advances
in Geographic Information Systems, ACM-GIS 2009,
November 4-6, 2009, Seattle, Washington, USA,
Proceedings. ACM, 2009.

[2] J. L. Bentley and T. Ottmann. Algorithms for reporting
and counting geometric intersections. IEEE Trans.
Computers, 28(9):643–647, 1979.

[3] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On
map-matching vehicle tracking data. In K. Böhm, C. S.
Jensen, L. M. Haas, M. L. Kersten, P.-Å. Larson, and B. C.
Ooi, editors, VLDB, pages 853–864. ACM, 2005.

[4] H. Cao, O. Wolfson, and G. Trajcevski. Spatio-temporal
data reduction with deterministic error bounds. VLDB J.,
15(3):211–228, 2006.

[5] Y. Chen, K. Jiang, Y. Zheng, C. Li, and N. Yu. Trajectory
simplification method for location-based social networking
services. In X. Zhou and X. Xie, editors, GIS-LBSN, pages
33–40. ACM, 2009.

[6] D. H. Douglas and T. K. Peucker. Algorithms for the
reduction of the number of points required to represent a
digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[7] J. Gudmundsson, J. Katajainen, D. Merrick, C. Ong, and
T. Wolle. Compressing spatio-temporal trajectories.
Comput. Geom., 42(9):825–841, 2009.

[8] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T.
Shen. Discovery of convoys in trajectory databases.
PVLDB, 1(1):1068–1080, 2008.

[9] L. Kulik, M. Duckham, and M. J. Egenhofer.
Ontology-driven map generalization. J. Vis. Lang.
Comput., 16(3):245–267, 2005.

[10] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering:
a partition-and-group framework. In C. Y. Chan, B. C.
Ooi, and A. Zhou, editors, SIGMOD Conference, pages
593–604. ACM, 2007.

[11] Y. Lou, C. Zhang, Y. Zheng, X. Xie, W. Wang, and
Y. Huang. Map-matching for low-sampling-rate gps
trajectories. In Agrawal et al. [1], pages 352–361.

[12] N. Meratnia and R. A. de By. Spatiotemporal compression
techniques for moving point objects. In E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides,
M. Koubarakis, K. Böhm, and E. Ferrari, editors, EDBT,
volume 2992 of Lecture Notes in Computer Science, pages
765–782. Springer, 2004.

[13] P. Newson and J. Krumm. Hidden markov map matching
through noise and sparseness. In Agrawal et al. [1], pages
336–343.

[14] M. Potamias, K. Patroumpas, and T. K. Sellis. Sampling
trajectory streams with spatiotemporal criteria. In SSDBM,
pages 275–284. IEEE Computer Society, 2006.

[15] R. Song, W. Sun, B. Zheng, and Y. Zheng. PRESS: A novel
framework of trajectory compression in road networks.
PVLDB, 7(9):661–672, 2014.

[16] P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to
Data Mining. Addison-Wesley, 2005.

[17] C. E. White, D. Bernstein, and A. L. Kornhauser. Some
map matching algorithms for personal navigation
assistants. Transportation Research Part C: Emerging
Technologies, 8(1):91–108, 2000.

[18] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. An
interactive-voting based map matching algorithm. In
T. Hara, C. S. Jensen, V. Kumar, S. Madria, and
D. Zeinalipour-Yazti, editors, Mobile Data Management,
pages 43–52. IEEE Computer Society, 2010.

